Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/detail.php on line 234

Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 82

Warning: array_push() expects parameter 1 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 85
Pharmalicensing | Life Science's Global Technology Marketplace
Save this technology
close
Save to Existing Project
Save to a New Project
Cost-Effective Astaxanthin Production in Bacteria
Yeda R&D Co. Ltd Israel flag Israel
Abstract ID: 1650
Efficient Production of natural Astaxanthin in bioengineered bacteria is a game changer for the nutraceuticals industry. The market-pull for natural Astaxanthin is much greater than the supply. Synthetic...
Contact
Participants
You
Email me a copy of this message
Introduction/Background

Efficient Production of natural Astaxanthin in bioengineered bacteria is a game changer for the nutraceuticals industry. The market-pull for natural Astaxanthin is much greater than the supply. Synthetic Astaxanthin is produced from petrochemical sources; it contains unwanted stereoisomers and is rejected by consumers who prefer natural Astaxanthin.

Aims/Hypothesis

Production of natural Astaxanthin in microalgae is laborious, expensive, and time-consuming.

Results

At Dr. Ron Milo's lab researchers employed a method that uses the relatively short Ribosome Binding Site (RBS) sequence in a combinatorial manner. The methodology involves combinatorial pairing of target genes (Astaxanthin metabolic pathway enzymes) with a small set of RBS sequences and assembling them into a library of synthetic operons to explore protein expression space and to locate desired phenotypes in bacteria. The researchers used a small set of RBS sequences to modulate in parallel the protein expression levels of multiple genes over several orders of magnitude. Using this approach, they were able to efficiently scan a large fraction of the Astaxanthin metabolic expression space with a manageable set of tested genotypes.

Conclusion

Researchers at the Weizmann Institute used a combinatorial approach to construct bioengineered operons capable of modulating the expression levels of enzymes involved in the production of Astaxanthin. By combinatorial pairing of these genes in E. coli, they achieved natural Astaxanthin production 4-fold higher than previously reported.
The innovative method can challenge the deficiencies of natural Astaxanthin production in microalgae. Following scale-up and industrial development of the proprietary process, production of natural Astaxanthin has the potential to be considerably cheaper and competitive with the cost of synthesizing Astaxanthin.

Relevance/Opportunity

Please enquire quoting reference no. 1650 regarding licensing or codevelopment partnerships.
FEATURED
Last Updated May 2015
Technology Type PLATFORM
Phase of Development PRECLINICAL
CORPORATION