Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/detail.php on line 234

Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 82

Warning: array_push() expects parameter 1 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 85
Pharmalicensing | Life Science's Global Technology Marketplace
Save this technology
close
Save to Existing Project
Save to a New Project
Inorganic Fullerene Coating for Medical Devices
Yeda R&D Co. Ltd Israel flag Israel
Abstract ID: 1566
Novel nanoparticle lubricants can significantly reduce friction of different dental devices and enable reduction of treatment times. Different dental applications suffer from excessive friction, which severely compromise their...
Contact
Participants
You
Email me a copy of this message
Introduction/Background

Novel nanoparticle lubricants can significantly reduce friction of different dental devices and enable reduction of treatment times. Different dental applications suffer from excessive friction, which severely compromise their function. For orthodontic procedures, friction significantly reduces effectiveness and thereby leads to prolonged treatments. In root canal treatments, NiTi (Nickel-Titanium) endodontic files are prone to fatigue-induced and incidental failure.

Aims/Hypothesis

Friction-reducing coatings are thus required.

Results

WS2 fullerene-like nanostructures (IF-WS2) are 20-200nm particles that are formed under certain reducing and sulfidizing conditions and elevated temperatures, from tungsten oxide (WO3) nanoparticles. Good lubricity is attributed to their multiple-layered structure. As the load between rubbed surfaces increases, nanoparticles gradually deform and exfoliate to coat the asperities at the interface. The weak forces between the thin sheets of the exfoliated nanoparticles allow a very low shear force sliding motion between the two contacting bodies.

Experimental testing showed significant reduction in the static friction resistance to sliding in IF-WS2 coated archwires at the different angles, especially in the 10? tilt. At initial stages of treatment, IF-WS2 nanoparticles act as spacers and reduce the number of asperities that come into contact resulting in a lower coefficient of friction. As the angle grows and the load at the edges of the slot increases, the exfoliation of some of the nanoparticles occurs, resulting in the dry lubrication of the sliding. Furthermore, IF-WS2 nanoparticles act as a protection against oxidation of the metal surface

Conclusion

This invention presents coating with inorganic fullerene-like nanoparticles of WS2 (IF-WS2) impregnated in a metal matrix, as an effective friction-reducing agent. The unique structure of these particles provides them with high lubricity. Consequently, the problem of friction during orthodontic treatment could be minimized, enhancing anchorage control, reducing duration of treatment and decreasing the risk of root resorption. The same coating is shown to significantly improve the lifetime of endodontic files by alleviating fatigue and failure, having vast implications on duration, safety and consequences of root canal treatments.

Relevance/Opportunity

Please enquire quoting reference 1566 regarding licensing or codevelopment partnerships.
GO PREMIUM TO GET PATENT INFORMATION
FEATURED
Last Updated May 2015
Technology Type MEDICAL DEVICE
Phase of Development PRECLINICAL
CORPORATION