Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/detail.php on line 234

Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 82

Warning: array_push() expects parameter 1 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 85
Pharmalicensing | Life Science's Global Technology Marketplace
Save this technology
close
Save to Existing Project
Save to a New Project
Novel MRI Contrast Agent
Yeda R&D Co. Ltd Israel flag Israel
Abstract ID: 1604
Novel reporter gene for magnetic resonance imaging applications. The ability to image the duration and location of gene expression in vivo and noninvasively is imperative for the future of biology...
Contact
Participants
You
Email me a copy of this message
Novel reporter gene for magnetic resonance imaging applications. The ability to image the duration and location of gene expression in vivo and noninvasively is imperative for the future of biology and clinical medicine. Magnetic Resonance Imaging (MRI) is a widely used non-invasive clinical diagnostic tool that offers views into deep tissues at exquisite spatial resolution. Recently, MRI has emerged as a valuable tool for monitoring the expression of genes by utilizing metal-complexed MRI agents to display transgene activity in vivo. However, administration of metal complexes into tissues and cells is challenging. Intra-cellular metalloproteins such as Ferritin have been utilized as endogenous MRI contrast agents, but offer relatively low sensitivity.

Ferritin, the main Iron storage intracellular protein, contains a paramagnetic ferryhydrate core, and thus was proposed as an endogenous MRI reporter gene. However, Ferritin provides relatively low sensitivity. One way to increase sensitivity of Ferritin is to convert the non-crystalline ferrihydrate in its core into crystal magnetite as has been done chemically, to form magneto-ferritin. The current method enhances the magnetic properties of Ferritin by engineering a Ferritin protein fused to a bacteria-derived peptide. This novel recombinant fusion protein facilitates conversion of ferrihydrate into crystal magnetite and by this induces MRI contrast. The new construct can serve for monitoring delivery and differentiation of cells in vivo in cellular based therapy.

Conclusion

The present technology provides a novel Ferritin-based transgene with enhanced MRI contrast.

Relevance/Opportunity

Please enquire quoting reference 1604 regarding licensing or codevelopment partnerships.
FEATURED
Last Updated May 2015
Technology Type PLATFORM
Phase of Development PRECLINICAL
CORPORATION