Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/detail.php on line 234

Warning: in_array() expects parameter 2 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 82

Warning: array_push() expects parameter 1 to be array, null given in /home/pharmalicensing/public_html/inc_stats.php on line 85
Pharmalicensing | Life Science's Global Technology Marketplace
Save this technology
close
Save to Existing Project
Save to a New Project
Truncated Chicken Anemia Virus -VP3 As A Potential Therapeutic Protein Against Human Breast Cancer
Putra Science Park Malaysia flag Malaysia
Abstract ID:
Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells...
Contact Ahmad zakir Dato wira jaafar
Participants
You
Email me a copy of this message

In the new era of clinical research, the study in mass production of recombinant protein has gained a lot of attention as protein therapy plays a role in overcoming the limitation and safety concern posed by gene-based therapy Designing and formulating a protein delivery into cancer cells has been a persistent challenge because of their unfavorable poor membrane permeability and large molecular size. Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. The wildtype Apoptin of 121 amino acids had been mutated by segmental deletion at the N' terminal and linking it with nuclear localization sites (NLS1 and NLS2) to develop five truncated constructs.

One of the truncated recombinant Apoptin (pVP3A1-31N1N2), with only 50 amino acids has the minimal functional regions to be selectively translocated to the nucleus of human breast cancer cells, MCF7 and induced apoptosis. When this truncated protein was microinjected in the non-cancerous Chang human liver cells, cytoplasmic retention was observed. Therefore, truncated Apoptin, pVP3A1-31N1N2 which has a deletion of 71 amino acids retained its targeted capability to be a tumour-specific death effector as opposed to its cytosolic nontoxicity in human normal cells. The truncation of Apoptin into linked functional segments allowed screening for indispensable N-terminal domain for selective killing of breast cancer cells. A critical stretch at the upstream of a known hydrophobic leucine-rich stretch (LRS) in N-terminal was identified as one of the prerequisite regions for cancer targeting. In contrast to larger proteins, producing smaller protein helps in reducing unnecessary side effects posed by whole protein to a cell and facilitate carrier-mediated-transport across cellular membrane. The mentioned technology provides the platform to enhance targeted protein delivery for selective and effective breast cancer therapy.

Advantages

1.The production of truncated Apoptin harboured the native wild-type feature of selective killing of cancer cells.

2. Smaller Apoptin can be effectively transported to and across target cell by carrier mediated delivery e.g. nanoparticles, protein-transduction-domain.

3. The announcement of an indispensable region could be a benefiting platform in drug development.

4. Maintenance of selectivity in small protein prevents wastage of protein, deemed cost effective.

Type of Business Relationship Sought
Licensing and Commercialisation
FEATURED
Last Updated Jun 2016
Technology Type THERAPEUTIC
Phase of Development EARLY STAGE
UNIVERSITY